HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers

نویسندگان

  • Marc L. Mendillo
  • Sandro Santagata
  • Martina Koeva
  • George W. Bell
  • Rong Hu
  • Rulla M. Tamimi
  • Ernest Fraenkel
  • Tan A. Ince
  • Luke Whitesell
  • Susan Lindquist
چکیده

Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival, and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their nontransformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shock about heat shock in cancer

The transcription factor heat shock factor 1 (HSF1) is the master regulator of the heat shock response. It is crucial for cell homeostasis and implicated in aging, neurodegenerative disease and cancer. Although induction by HSF1 of the expression of molecular chaperones and other regulators of protein quality control, both folding and degradation, is well established, the precise and detailed t...

متن کامل

Inhibiting Heat Shock Factor 1 in Human Cancer Cells with a Potent RNA Aptamer

Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities i...

متن کامل

Tumor microenvironment in cancer progression

Keywords: tumor microenvironment; Heat-shock Factor 1 (HSF1) Billions of years of evolution through changing environments led organisms to develop an arsenal of cytoprotec-tive pathways to promote their survival under stressful conditions. We hypothesized that tumors exploit these mechanisms to support their own survival as they rapidly develop and evolve in a hostile and stressful environment....

متن کامل

The Reprogramming of Tumor Stroma by HSF1 Is a Potent Enabler of Malignancy

Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis. Surprisingly little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. We report that the transcriptional regulator heat shock factor 1 (HSF1) is frequently activated in cancer-associated fibroblasts (CAFs), where it is a potent enabler of mali...

متن کامل

Implication of Heat Shock Factors in Tumorigenesis: Therapeutical Potential

Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2012